题目内容
14.已知双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,则此双曲线的离心率为( )| A. | $\frac{{\sqrt{7}}}{2}$ | B. | $\frac{{\sqrt{13}}}{3}$ | C. | $\frac{{\sqrt{21}}}{3}$ | D. | $\frac{5}{3}$ |
分析 根据双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,可得$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$,即可求出双曲线的离心率.
解答 解:∵双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,
∴$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$,
∴a=$\frac{\sqrt{3}}{2}$b,
∴c=$\frac{\sqrt{7}}{2}$b,
∴e=$\frac{\sqrt{21}}{3}$.
故选C.
点评 本题考查双曲线的离心率,考查学生的计算能力,确定$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$是关键,属于基础题.
练习册系列答案
相关题目
9.设F1,F2分别是椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=$\frac{4}{3}$a.则该椭圆的离心率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{3}$ |
4.若直线y=kx+2(k∈R)与椭圆x2+$\frac{{y}^{2}}{m}$=1恒有交点,则实数m的取值范围为( )
| A. | (4,+∞) | B. | [4,+∞) | C. | (-∞,4) | D. | (-∞,4] |