题目内容
已知tanθ=2.
(Ⅰ)求tan(
+θ)的值;
(Ⅱ)求cos2θ的值.
(Ⅰ)求tan(
| π |
| 4 |
(Ⅱ)求cos2θ的值.
(Ⅰ)∵tanθ=2,
∴tan(
+θ)=
=
=-3;
(Ⅱ)∵tanθ=2,∴
=2,即sinθ=2cosθ,
∴sin2θ=4cos2θ,
∴1-cos2θ=4cos2θ,即cos2θ=
,
∴cos2θ=2cos2θ-1=-
.
∴tan(
| π |
| 4 |
| 1+tanθ |
| 1-tanθ |
| 1+2 |
| 1-2 |
(Ⅱ)∵tanθ=2,∴
| sinθ |
| cosθ |
∴sin2θ=4cos2θ,
∴1-cos2θ=4cos2θ,即cos2θ=
| 1 |
| 5 |
∴cos2θ=2cos2θ-1=-
| 3 |
| 5 |
练习册系列答案
相关题目