题目内容
11.已知定义在R上的函数f(x)=2|x|-1,记a=f(log0.53),b=f(log25),c=f(log2$\frac{1}{4}$),则a,b,c的大小关系为a<c<b(用不等式由小到大连接)分析 利用函数的奇偶性与单调性即可得出.
解答 解:∵log0.53=-log23∈(-2,-1),log25>2,log2$\frac{1}{4}$=-2,
∵f(x)=2|x|-1,∴函数f(x)为偶函数,
且:x≥0时,函数f(x)=2x-1,可得函数f(x)在x≥0时单调递增.
又a=f(log0.53)=f(log23),b=f(log25),c=f(log2$\frac{1}{4}$)=f(2),
∴b>c>a.
故答案为:a<c<b.
点评 本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
3.已知函数f(x)=$\sqrt{3}$sinx+3cosx,当x∈[0,π]时,f(x)≥$\sqrt{3}$的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{4}$ |
1.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为( )
| A. | (2cosθ,2sinθ) | B. | (-2cosθ,2sinθ) | C. | (-2cosθ,-2sinθ) | D. | (2cosθ,-2sinθ) |