ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄԵ㴦£¬¼«ÖáÓëxÖá·Ç¸º°ëÖáÖØºÏ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ3¦Ñcos¦È+¦Ñsin¦È-6=0£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{5}cos¦Á\\ y=1+\sqrt{5}sin¦Á\end{array}\right.$£¬£¨1£©ÇóÖ±ÏßlºÍÔ²CµÄÖ±½Ç×ø±êϵ·½³Ì£»
£¨2£©ÈôÏཻ£¬Çó³öÖ±Ïß±»Ô²Ëù½ØµÃµÄÏÒ³¤£®
·ÖÎö £¨1£©ÏûÈ¥²ÎÊý£¬Çó³öÖ±ÏߺÍÔ²µÄÆÕͨ·½³Ì¼´¿É£»
£¨2£©Çó³öÔ²ÐĺͰ뾶£¬¸ù¾Ýµãµ½Ö±ÏߵľàÀëÇó³öd£¬´Ó¶øÇó³öÏÒ³¤¼´¿É£®
½â´ð ½â£º£¨1£©½«Ô²CµÄ²ÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±êϵ·½³Ì£ºx2+y2-2y-4=0£¬
»¯Îª±ê×¼·½³ÌÊÇx2+£¨y-1£©2=5£¬¡£¨3·Ö£©
Ö±Ïßl£º3x+y-6=0¡£¨5·Ö£©
£¨2£©ÓÉx2+£¨y-1£©2=5£¬ËùÒÔÔ²ÐÄC£¨0£¬1£©£¬°ë¾¶$r=\sqrt{5}$£»
ËùÒÔÔ²ÐÄCµ½Ö±Ïßl£º3x+y-6=0µÄ¾àÀëÊÇ$d=\frac{{|{3¡Á0+1¡Á1-6}|}}{{\sqrt{{3^2}+{1^2}}}}=\frac{{\sqrt{10}}}{2}$£»
Ö±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤Îª$|{AB}|=2\sqrt{{r^2}-{d^2}}=2\sqrt{{{£¨{\sqrt{5}}£©}^2}-{{£¨{\frac{{\sqrt{10}}}{2}}£©}^2}}=\sqrt{10}$£®£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄת»¯£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµÒÔ¼°µãµ½µÄÖ±ÏߵľàÀ룬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿