题目内容

13.大学开设甲、乙、丙三门选修课供学生任意选修(也可不选),假设学生是否选修哪门课彼此互不影响.已知某学生只选修甲一门课的概率为0.08,选修甲和乙两门课的概率为0.12,至少选修一门的概率是0.88.
(1)求该学生选修甲、乙、丙的概率分别是多少?
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求ξ的分布列和数学期望.

分析 (1)设该学生选修甲、乙、丙的概率分别为x、y、z,利用相互独立事件概率乘法公式和对立事件概率计算公式列出方程组,能求出该学生选修甲、乙、丙的概率.
(2)依题意知ξ的可能取值为0,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.

解答 解:(1)设该学生选修甲、乙、丙的概率分别为x、y、z
由题意知$\left\{\begin{array}{l}x(1-y)(1-z)=0.08\\ xy(1-z)=0.12\\ 1-(1-x)(1-y)(1-z)=0.88\end{array}\right.$,(4分)
解之得$\left\{\begin{array}{l}x=0.4\\ y=0.6\\ z=0.5\end{array}\right.$,
∴该学生选修甲、乙、丙的概率分别是0.4,0.6,0.5.(6分)
(2)依题意知ξ的可能取值为0,2,(7分)
∴P(ξ=0)=xyz+(1-x)(1-y)(1-z)=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24,(9分)
∴P(ξ=2)=1-P(ξ=0)=0.76
(或:仅仅选甲的概率为0.08,仅仅选乙概率为0.18,仅仅选丙的概率为0.12,合计为0.38,同样仅仅不选甲、仅仅不选乙、仅仅不选丙的概率和也为0.38,故P(ξ=2)=0.38+0.38=0.76)(9分)
则ξ的分布列为

ξ02
P0.240.76
∴ξ的数学期望为Eξ=0×0.24+2×0.76=1.52.(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式和对立事件概率计算公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网