题目内容
定义域为R的函数f(x)=
,若函数F(x)=f2(x)+bf(x)+c有且只有3个不同的零点x1,x2,x3,则ln(x1+x2+x3)的值为( )
|
| A、6 | B、ln6 |
| C、2ln3 | D、3ln2 |
考点:分段函数的应用
专题:计算题,数形结合
分析:f(x)的图象关于x=3对称,方程f(x)=3有三个不同的解.利用换元的思想方法,关于f(x)的方程f2(x)+bf(x)+c=0只能有一个解,故只能有f(x)=3,图象的对称性,x1+x2+x3=3×3=9,ln(x1+x2+x3)=ln9=2ln3.
解答:
解:f(x)=
的图象关于x=3对称,且直线y=3与y=f(x)图象交于三个不同点,即方程f(x)=3有三个不同的解.
若函数F(x)=f2(x)+bf(x)+c有且只有3个不同的零点x1,x2,x3,则关于f(x)的方程f2(x)+bf(x)+c=0只能有一个解,从而只能有f(x)=3,所以x1,x2,x3,就是方程f(x)=3的解,根据图象的对称性,x1+x2+x3=3×3=9,ln(x1+x2+x3)=ln9=2ln3
故选:C
|
若函数F(x)=f2(x)+bf(x)+c有且只有3个不同的零点x1,x2,x3,则关于f(x)的方程f2(x)+bf(x)+c=0只能有一个解,从而只能有f(x)=3,所以x1,x2,x3,就是方程f(x)=3的解,根据图象的对称性,x1+x2+x3=3×3=9,ln(x1+x2+x3)=ln9=2ln3
故选:C
点评:本题主要考查了函数与方程的综合运用,以及函数的图象与方程之间的关系,利用数形结合,想到f(x)的图象关于x=3对称是解决本题的关键.
练习册系列答案
相关题目
若函数f(x)=-x•ex,则下列命题正确的是( )
A、?a∈(-∞,
| ||
B、?a∈(
| ||
C、?x∈R,?a∈(-∞,
| ||
D、?x∈R,?a∈(
|
已知等比数列{an}的前n项和为Sn,且满足
=17,则公比q=( )
| S8 |
| S4 |
A、
| ||
B、±
| ||
| C、2 | ||
| D、±2 |
某工厂生产某产品x吨所需费用为P元,而卖出x吨的价格为每吨Q元,已知P=1000+5x+
x2,Q=a+
,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( )
| 1 |
| 10 |
| x |
| b |
| A、a=45,b=-30 |
| B、a=30,b=-45 |
| C、a=-30,b=45 |
| D、a=-45,b=-30 |
已知平面上A,B,C三点共线,且
=f(x)
+[1-2sin(2x+
)]
,则对于函数f(x),下列结论中错误的是( )
| OC |
| OA |
| π |
| 3 |
| OB |
| A、周期是π | ||||
| B、最大值是2 | ||||
C、(
| ||||
D、函数在区间[-
|
若曲线C:
+x2=1和直线l:y=kx+3只有一个公共点,那么k的值为 ( )
| y2 |
| 4 |
A、
| ||||
B、
| ||||
| C、5或-5 | ||||
D、
|