ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{4}+{y^2}$=1£¬¹ýµãD£¨0£¬4£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬Á½µãM£¬N£¨MÔÚD£¬NÖ®¼ä£©£¬ÓÐÒÔÏÂËĸö½áÂÛ£º¢ÙÈô$\overrightarrow{DN}=¦Ë\overrightarrow{DM}$£¬Ôò¦ËµÄȡֵ·¶Î§ÊÇ1£¼¦Ë¡Ü$\frac{5}{3}$£»
¢ÚÈôAÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬ÇÒ¡ÏMANµÄ½Çƽ·ÖÏßÊÇxÖᣬÔòÖ±ÏßlµÄбÂÊΪ-2£»
¢ÛÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÔµãO£¬ÔòÖ±ÏßlµÄбÂÊΪ¡À2$\sqrt{5}$£»
¢ÜÈô$\left\{{\begin{array}{l}{{x^'}=x}\\{{y^'}=2y}\end{array}}$£¬ÍÖÔ²C±ä³ÉÇúÏßE£¬µãM£¬N±ä³ÉM¡ä£¬N¡ä£¬ÇúÏßEÓëyÖá½»ÓÚµãP£¬Q£¬ÔòÖ±ÏßPN¡äÓëQM¡äµÄ½»µã±ØÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®
ÆäÖÐÕýÈ·µÄÐòºÅÊǢ٢ܣ®
·ÖÎö ÓÉÌâÒâ¿ÉÖª£ºÓÉ$\overrightarrow{DN}=¦Ë\overrightarrow{DM}$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}_{2}=¦Ë{x}_{1}}\\{{y}_{2}=4+¦Ë£¨{y}_{1}-4£©}\end{array}\right.$£¬½«µãM£¬NÔÚÍÖÔ²ÉÏ£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃy1=$\frac{15-17¦Ë}{8¦Ë}$£¬ÓÉÍÖÔ²µÄȡֵ·¶Î§¿ÉÖª£º-1¡Üy1¡Ü1£¬¼´-1¡Ü$\frac{15-17¦Ë}{8¦Ë}$¡Ü1£¬¼´¿ÉÇóµÃ¦ËµÄȡֵ·¶Î§£¬¹Ê¢ÙÕýÈ·£»
ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬Ò×ÖªÖ±ÏßΪyÖᣬбÂʲ»´æÔÚ£¬¹Ê¢Ú´íÎó£»
ÏÔÈ»£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèlµÄ·½³Ì£ºy=kx+4£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{32k}{1+4{k}^{2}}$£¬x1•x2=$\frac{60}{1+4{k}^{2}}$£¬ÓÉ$\overrightarrow{OM}$•$\overrightarrow{ON}$=0£¬¼´x1•x2+y1•y2=0£¬´úÈë¼´¿ÉÇóµÃÖ±ÏßlµÄбÂÊkµÄÖµ£¬¹Ê¢Û´íÎó£»
Óɱ任¿ÉÖª£¬ÇúÏßEÊÇÒ»¸öÔ²£ºx2+y2=4£¬PN¡äÓëQM¡äÊÇ´ËÔ²µÄÁ½ÌõÏཻÏÒ£¬P£¨0£¬2£©£¬Q£¨0£¬-2£©£¬ÉèlµÄ·½³Ì£ºx=k£¨y-4£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔòPN¡ä£ºy-2=$\frac{{y}_{2}-2}{{x}_{2}}$•x£¬¼´y-2=$\frac{{y}_{2}-2}{k£¨{y}_{2}-4£©}$•x£¬PM¡ä£ºy+2=$\frac{{y}_{1}+2}{{x}_{1}}$•x£¬¼´y+2=$\frac{{y}_{1}+2}{k£¨{y}_{1}-4£©}$•x£¬ÇóµÃy=-$\frac{2{y}_{1}{y}_{2}-6{y}_{1}-2{y}_{2}}{{y}_{1}-3{y}_{2}+8}$£¬ÓÉ£¨2y1•y2-6y1-2y2£©+£¨y1-3y2+8£©=0£¬y=1£¬¼´PN¡äÓëQM¡ä½»µãÔÚÖ±Ïßy=1ÉÏ£¬¹Ê¢ÜÕýÈ·£®
½â´ð ½â£º¢ÙÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉ$\overrightarrow{DN}=¦Ë\overrightarrow{DM}$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}_{2}=¦Ë{x}_{1}}\\{{y}_{2}=4+¦Ë£¨{y}_{1}-4£©}\end{array}\right.$£¬
ÓɵãM£¬NÔÚÍÖÔ²ÉÏ£¬Ôò$\left\{\begin{array}{l}{{x}_{1}^{2}+4{y}_{1}^{2}=4}\\{{x}_{2}^{2}+4{y}_{2}^{2}=4}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{{x}_{1}^{2}+4{y}_{1}^{2}=4}\\{£¨¦Ë{x}_{1}£©^{2}+4£¨4+¦Ë{y}_{1}-4¦Ë£©^{2}=4}\end{array}\right.$£¬ÏûÈ¥${x}_{1}^{2}$£¬¿ÉµÃ£ºy1=$\frac{15-17¦Ë}{8¦Ë}$£¬
ÓÉÍÖÔ²µÄȡֵ·¶Î§¿ÉÖª£º-1¡Üy1¡Ü1£¬¼´-1¡Ü$\frac{15-17¦Ë}{8¦Ë}$¡Ü1£¬
Ó֦ˣ¾1£¬½âµÃ£º1£¼¦Ë¡Ü$\frac{5}{3}$£¬¹Ê¢ÙÕýÈ·£»
¢ÚÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬Ò×ÖªÖ±ÏßΪyÖᣬбÂʲ»´æÔÚ£¬¹Ê¢Ú´íÎó£»
¢ÛÏÔÈ»£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèlµÄ·½³Ì£ºy=kx+4£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=kx+4}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+4k2£©x2+32kx+60=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{32k}{1+4{k}^{2}}$£¬x1•x2=$\frac{60}{1+4{k}^{2}}$£¬
¡ßÒÔMNΪֱ¾¶µÄÔ²¹ýÔµãO£¬
¡à$\overrightarrow{OM}$•$\overrightarrow{ON}$=0£¬¼´x1•x2+y1•y2=0£¬
y1•y2=£¨kx1+4£©£¨kx2+4£©=k2x1•x2+4k£¨x1+x2£©+16£¬
¼´£¨1+k2£©•$\frac{60}{1+4{k}^{2}}$+4k•£¨-$\frac{32k}{1+4{k}^{2}}$£©+16=0£¬»¯¼òµÃ£ºk2=19£¬½âµÃ£ºk=$\sqrt{19}$£¬¹Ê¢Û´íÎó£»
¢ÜÓɱ任¿ÉÖª£¬ÇúÏßEÊÇÒ»¸öÔ²£ºx2+y2=4£¬PN¡äÓëQM¡äÊÇ´ËÔ²µÄÁ½ÌõÏཻÏÒ£¬P£¨0£¬2£©£¬Q£¨0£¬-2£©£¬
ÉèlµÄ·½³Ì£ºx=k£¨y-4£©£¬M¡ä£¨x1£¬y1£©£¬N¡ä£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=k£¨y-4£©}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+k2£©y2-8k2x+16k2-4=0£¬
Ôòy1+y2=$\frac{8{k}^{2}}{1+{k}^{2}}$£¬y1•y2=$\frac{16{k}^{2}-4}{1+{k}^{2}}$£¬
PN¡ä£ºy-2=$\frac{{y}_{2}-2}{{x}_{2}}$•x£¬¼´y-2=$\frac{{y}_{2}-2}{k£¨{y}_{2}-4£©}$•x£¬
PM¡ä£ºy+2=$\frac{{y}_{1}+2}{{x}_{1}}$•x£¬¼´y+2=$\frac{{y}_{1}+2}{k£¨{y}_{1}-4£©}$•x£¬
¶þʽÏà³ý£¬µÃ£º$\frac{y-2}{y+2}$=$\frac{£¨{y}_{2}-2£©£¨{y}_{1}-4£©}{£¨{y}_{1}+2£©£¨{y}_{2}-4£©}$£¬
¡ày=-$\frac{2{y}_{1}{y}_{2}-6{y}_{1}-2{y}_{2}}{{y}_{1}-3{y}_{2}+8}$£¬
¡ß£¨2y1•y2-6y1-2y2£©+£¨y1-3y2+8£©£¬
=2y1•y2-5£¨y1+y2£©+8£¬
=2¡Á$\frac{8{k}^{2}}{1+{k}^{2}}$-5¡Á$\frac{8{k}^{2}}{1+{k}^{2}}$+8£¬
=0£¬
¡ày=1£¬
¼´PN¡äÓëQM¡ä½»µãÔÚÖ±Ïßy=1ÉÏ£¬¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨ÀíµÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | 2 | B£® | 6 | C£® | 2»ò6 | D£® | ÒÔÉϴ𰸶¼²»¶Ô |