题目内容


在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵A=对应的变换作用下得到曲线F,求曲线F的方程.


设P(x0,y0)是椭圆上任意一点,点P(x0,y0)在矩阵A对应的变换下变为点P'(x'0,y'0),则有=,即所以又因为点P在椭圆上,故4+=1,从而(x'0)2+(y'0)2=1,所以曲线F的方程是x2+y2=1.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网