ÌâÄ¿ÄÚÈÝ
6£®ÉèrÊÇ·½³Ìf£¨x£©=0µÄ¸ù£¬Ñ¡È¡x0×÷ΪrµÄ³õʼ½üËÆÖµ£¬¹ýµã£¨x0£¬f£¨x0£©£©×öÇúÏßy=f£¨x£©µÄÇÐÏßl£¬lµÄ·½³ÌΪy=f£¨x0£©+f'£¨x0£©£¨x-x0£©£¬Çó³ölÓëxÖá½»µãµÄºá×ø±êx1=x0-$\frac{{f£¨{x_0}£©}}{{f'£¨{x_0}£©}}$£¬³Æx1ΪrµÄÒ»´Î½üËÆÖµ£®¹ýµã£¨x1£¬f£¨x1£©£©×öÇúÏßy=f£¨x£©µÄÇÐÏߣ¬²¢Çó¸ÃÇÐÏßÓëxÖá½»µãµÄºá×ø±êx2=x1-$\frac{f£¨{x}_{1}£©}{f¡ä£¨{x}_{1}£©}$£¬³Æx2ΪrµÄ¶þ´Î½üËÆÖµ£®Öظ´ÒÔÉϹý³Ì£¬µÃrµÄ½üËÆÖµÐòÁУ¬ÆäÖУ¬xn+1=xn-$\frac{{f£¨{x_n}£©}}{{f'£¨{x_n}£©}}$£¬³ÆÎªrµÄn+1´Î½üËÆÖµ£¬ÉÏʽ³ÆÎªÅ£¶Ùµü´ú¹«Ê½£®ÒÑÖª$\sqrt{6}$ÊÇ·½³Ìx2-6=0µÄÒ»¸ö¸ù£¬ÈôÈ¡x0=2×÷ΪrµÄ³õʼ½üËÆÖµ£¬ÔòÔÚ±£ÁôËÄλСÊýµÄǰÌáÏ£¬$\sqrt{6}$¡Ö£¨¡¡¡¡£©
| A£® | 2.4494 | B£® | 2.4495 | C£® | 2.4496 | D£® | 2.4497 |
·ÖÎö f£¨x£©=2x£¬xn+1=xn-$\frac{{f£¨{x_n}£©}}{{f'£¨{x_n}£©}}$=xn-$\frac{{x}_{n}^{2}-6}{2{x}_{n}}$=$\frac{1}{2}{x}_{n}$+$\frac{3}{{x}_{n}}$£®È¡x0=2ʱ£¬·Ö±ð¼ÆËãx1£¬x2£¬x3£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£ºf£¨x£©=2x£¬xn+1=xn-$\frac{{f£¨{x_n}£©}}{{f'£¨{x_n}£©}}$=xn-$\frac{{x}_{n}^{2}-6}{2{x}_{n}}$=$\frac{1}{2}{x}_{n}$+$\frac{3}{{x}_{n}}$£®
x0=2ʱ£¬x1=$\frac{1}{2}{x}_{0}$+$\frac{3}{{x}_{0}}$=$\frac{1}{2}¡Á2+\frac{3}{2}$=2.5£®
x2=$\frac{1}{2}{x}_{1}+\frac{3}{{x}_{1}}$=$\frac{1}{2}¡Á2.5+\frac{3}{2.5}$=2.45£¬
x3=$\frac{1}{2}{x}_{2}+\frac{3}{{x}_{2}}$=$\frac{1}{2}¡Á2.45+\frac{3}{2.45}$¡Ö2.4495£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˵¼ÊýµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿