题目内容
15.某班有50名学生,一次数学考试的成绩ξ服从正态分布N(110,102),已知P(100≤ξ≤110)=0.36,估计该班学生数学成绩在120分以上的有7人.分析 根据考试的成绩ξ服从正态分布N(110,102).得到考试的成绩ξ关于ξ=110对称,根据P(100≤ξ≤110)=0.36,得到P(ξ≥120)=0.14,根据频率乘以样本容量得到这个分数段上的人数.
解答 解:∵考试的成绩ξ服从正态分布N(110,102).
∴考试的成绩ξ关于ξ=110对称,
∴P=(ξ>120)=0.5-P(100≤ξ≤110)=0.5-0.36=0.14,
所以估计该班学生数学成绩在120分以上的人数为50×0.14=7(人).
故答案为:7.
点评 本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=110对称,利用对称写出要用的一段分数的频数,题目得解.
练习册系列答案
相关题目
6.若函数f(x)满足f(x)=x(f′(x)-lnx),且f($\frac{1}{e}$)=$\frac{1}{e}$,则ef(ex)<f′($\frac{1}{e}$)+1的解集是( )
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (0,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,+∞) |
3.从区间(0,1)中任取两个数,作为直角三角形两直角边的长,则所得的两个数列使得斜边长不大于1的概率是( )
| A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
4.已知a>0,曲线f(x)=2ax2-$\frac{1}{ax}$在点(1,f(1))处的切线的斜率为k,则当k取最小值时a的值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
5.若函数f(x)=(ax2+bx)ex的图象如图所示,则实数a,b的值可能为( )
| A. | a=1,b=2 | B. | a=1,b=-2 | C. | a=-1,b=2 | D. | a=-1,b=-2 |