题目内容
已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.

(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.
(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.
(1)(2)见解析(3)
试题分析:(1)要证
(2)要证
(3)要求体积比,首先得找到体积,根据题意可知,分割后形成了两个棱锥,一个四棱锥,一个三棱锥;根据棱锥的体积公式,得找到底面积和高,而其中四棱锥的底面和高比较容易确定,而三棱锥中关键是确定底面和高,确定的依据就是是否有现成的线面垂直,显然
试题解析:(1)
.
则
(2)取
又
(3)过
所以:
因为
所以
练习册系列答案
相关题目