ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=18£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦È=$\frac{¦Ð}{6}$£¬ÇúÏßC1£¬C2ÏཻÓÚA£¬BÁ½µã£®£¨1£©ÇóA£¬BÁ½µãµÄ¼«×ø±ê£»
£¨2£©ÇúÏßC1ÓëÖ±Ïß$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©·Ö±ðÏཻÓÚM£¬NÁ½µã£¬ÇóÏß¶ÎMNµÄ³¤¶È£®
·ÖÎö £¨1£©ÓɦÈ=$\frac{¦Ð}{6}$£¬´úÈë¦Ñ2cos2¦È=18£¬¿ÉµÃ¦Ñ=¡À6£¬½ø¶øµÃµ½µãA£¬BµÄ¼«×ø±ê£®
£¨2£©ÓÉÇúÏßC1µÄ¼«×ø±ê·½³Ì¦Ñ2cos2¦È=18»¯Îª¦Ñ2£¨cos2¦È-sin2¦È£©=18£¬¼´¿ÉµÃµ½ÆÕͨ·½³ÌΪx2-y2=18£®½«Ö±Ïß$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$´úÈëx2-y2=8£¬ÕûÀíµÃ${t}^{2}+4\sqrt{3}t-28=0$£®½ø¶øµÃµ½|MN|£®
½â´ð ½â£º£¨1£©¦È=$\frac{¦Ð}{6}$£¬´úÈë¦Ñ2cos2¦È=18£¬¿ÉµÃ¦Ñ=¡À6£¬
¡àA£¬BÁ½µãµÄ¼«×ø±ê·Ö±ðΪ£¨6£¬$\frac{¦Ð}{6}$£©£¬£¨-6£¬$\frac{¦Ð}{6}$£©£»
£¨2£©ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=18£¬»¯Îª¦Ñ2£¨cos2¦È-sin2¦È£©=18£¬
µÃµ½Ö±½Ç×ø±ê·½³ÌΪx2-y2=18£¬
Ö±Ïß$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$´úÈëx2-y2=18£¬
ÕûÀíµÃ${t}^{2}+4\sqrt{3}t-28=0$£®
¡à|MN|=$\sqrt{£¨-4\sqrt{3}£©^{2}-4¡Á£¨-28£©}$=4$\sqrt{10}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£®
| A£® | 16=3+13 | B£® | 25=9+16 | C£® | 36=10+26 | D£® | 49=21+28 |
| ×éÊý | ·Ö×é | µÍ̼×åµÄÈËÊý | Õ¼±¾×éµÄƵÂÊ |
| µÚÒ»×é | [25£¬30©w | 120 | 0.6 |
| µÚ¶þ×é | [30£¬35©w | 195 | p |
| µÚÈý×é | [35£¬40©w | 100 | 0.5 |
| µÚËÄ×é | [40£¬45©w | a | 0.4 |
| µÚÎå×é | [45£¬50©w | 30 | 0.3 |
| µÚÁù×é | [50£¬55] | 15 | 0.3 |
£¨¢ò£©´ÓÄêÁä¶ÎÔÚ[40£¬50£©µÄ¡°µÍ̼×塱ÖвÉÓ÷ֲã³éÑù·¨³éÈ¡6È˲μӻ§ÍâµÍ̼ÌåÑé»î¶¯£¬ÆäÖÐѡȡ2ÈË×÷ΪÁì¶Ó£¬ÇóѡȡµÄ2ÃûÁì¶ÓÖÐÇ¡ÓÐ1ÈËÄêÁäÔÚ[40£¬45£©ËêµÄ¸ÅÂÊ£®
| A£® | Èôm¡În£¬n?¦Á£¬Ôòm¡Î¦Á | B£® | Èôl¡În£¬m¡Ín£¬Ôòl¡Îm | ||
| C£® | Èôl¡Í¦Á£¬m¡Í¦Â£¬ÇÒl¡Ím£¬Ôò¦Á¡Í¦Â | D£® | Èô¦Á¡Í¦Â£¬¦Á¡É¦Â=m£¬ÇÒm¡Ín£¬Ôòn¡Í¦Á |
| A£® | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$ | B£® | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$ | C£® | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ | D£® | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
£¨¢ñ£©Ð´³öÆäÖеÄa¡¢b¡¢n¼°xºÍyµÄÖµ£»
£¨¢ò£©Èô´ÓµÚ1£¬2£¬3×黨´ðϲ»¶µØ·½Ï·ÇúµÄÈËÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6ÈË£¬ÇóÕâÈý×éÿ×é·Ö±ð³éÈ¡¶àÉÙÈË£¿
£¨¢ó£©ÔÚ£¨¢ò£©³éÈ¡µÄ6ÈËÖÐËæ»ú³éÈ¡2ÈË£¬ÓÃX±íʾÆäÖÐÊǵÚ3×éµÄÈËÊý£¬ÇóXµÄ·Ö²¼ÁÐºÍÆÚÍû£®
| ×éºÅ | ·Ö×é | ϲ°®ÈËÊý | ϲ°®ÈËÊýÕ¼±¾×éµÄƵÂÊ |
| µÚ1×é | [15£¬25£© | a | 0.10 |
| µÚ2×é | [25£¬35£© | b | 0.20 |
| µÚ3×é | [35£¬45£© | 6 | 0.40 |
| µÚ4×é | [45£¬55£© | 12 | 0.60 |
| µÚ5×é | [55£¬65£© | 20 | 0.80 |