题目内容

18.已知抛物线C:y2=4x的焦点F,点P为抛物线C上任意一点,若点A(3,1),则|PF|+|PA|的最小值为4.

分析 设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|进而把问题转化为求|PA|+|PD|取得最小,进而可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.

解答 解:抛物线C:y2=4x的准线为x=-1.
设点P在准线上的射影为D,
则根据抛物线的定义可知|PF|=|PD|,
要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小.
当D,P,A三点共线时,|PA|+|PD|最小,为3-(-1)=4.
故答案为:4.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,P,A三点共线时|PA|+|PD|最小,是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网