题目内容
△ABC中,AB边的高为CD,若
,
,
,|
|=1,|
|=2,则
- A.

- B.

- C.

- D.

D
分析:根据射影定理可求出AD的长,从而得到向量
与向量
的关系,从而可求出向量
.
解答:∵
∴
即AC⊥BC
而AB边的高为CD,
,
,|
|=1,|
|=2
根据射影定理可知AC2=AD×AB即4=AD×
即AD=
而AB=
∴
=
故选D.
点评:本题主要考查了平面向量的数量积,以及射影定理的运用,同时考查了运算求解的能力,属于基础题.
分析:根据射影定理可求出AD的长,从而得到向量
解答:∵
∴
而AB边的高为CD,
根据射影定理可知AC2=AD×AB即4=AD×
而AB=
∴
故选D.
点评:本题主要考查了平面向量的数量积,以及射影定理的运用,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关题目