题目内容
7.从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( )| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 列举可得总的基本事件数和满足题意的数目,由古典概型的概率公式可得.
解答 解:从1,2,3,4中任取两个数,有(1,2),(1,3),
(1,4),(2,3),(2,4),(3,4)共6种情况,
其中一个数是另一个数两倍的为(1,2),(2,4)共2个,
故所求概率为P=$\frac{2}{6}$=$\frac{1}{3}$
故选:C
点评 本题考查列举法计算基本事件数及事件发生的概率,属基础题.
练习册系列答案
相关题目
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作圆x2+y2=a2的一条切线与双曲线的渐近线在第二象限内交于点A,同时这条切线交双曲线的右支于点B,且|AB|=|BF2|,则双曲线的渐近线的斜率为( )
| A. | ±2 | B. | ±$\sqrt{5}$ | C. | ±3 | D. | ±5 |
15.据《法制晚报》报道,2009年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28800人,图1是对这28800人血液中酒精含量进行检测所得结果的频率分布直方图,从左到右各直方块表示的人数依次记为A1、A2、…、A8(例如A2表示血液酒精浓度在30~40mg/100ml的人数),图2是对图1中血液酒精浓度在某一范围内的人数进行统计的程序框图.这个程序框图输出的s=( )

| A. | 24480 | B. | 24380 | C. | 23040 | D. | 23140 |
2.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,$\overrightarrow{MO}$=$\overrightarrow{OP}$,直线PF2交双曲线C于另一点N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线C的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{7}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
12.命题“有些相互垂直的两直线不相交”的否定是( )
| A. | 有些相互垂直的两直线相交 | B. | 有些不相互垂直的两直线不相交 | ||
| C. | 任意相互垂直的两直线相交 | D. | 任意相互垂直的两直线不相交 |
19.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+$\frac{f(x)}{x}$<0,若a=$\frac{1}{3}f(\frac{1}{3})$,b=-3f(-3),c=ln$\frac{1}{3}f(ln\frac{1}{3})$,则a,b,c的大小关系正确的是( )
| A. | a<b<c | B. | b<c<a | C. | a<c<b | D. | c<a<b |
16.在△ABC中,a=8,b=7,A=45°,则此三角形解的情况是( )
| A. | 一解 | B. | 两解 | C. | 一解或两解 | D. | 无解 |
17.已知集合A={x|x≤0,x∈R},B={a,1},若A∩B≠∅,则实数a的取值范围是( )
| A. | a<1 | B. | a≤1 | C. | a≥0 | D. | a≤0 |