题目内容
过△ABC的中线AD的中点E作直线PQ分别交AB、AC于P、Q两点,若
=m
,
=n
,则
+
=( )

| AP |
| AB |
| AQ |
| AC |
| 1 |
| m |
| 1 |
| n |
分析:由D为BC的中点可知,
=
+
=
(
+
),
=
(
+
)=
m
+
n
及
=
,结合
与
不共线可得关于m,n的方程,从而可求m,n,进而可求
| AD |
| AB |
| BD |
| 1 |
| 2 |
| AB |
| AC |
| AE |
| 1 |
| 2 |
| AP |
| AQ |
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| AC |
| AE |
| 1 |
| 2 |
| AD |
| AB |
| AC |
解答:解:由D为BC的中点可知,
=
+
=
+
=
+
(
-
)
=
(
+
)
∵
=m
,
=n
,
∴
=
(
+
)=
m
+
n
∵
=
∴
m
+
n
=
∴(
m-
)
=(
-
n)
∵
与
不共线
∴
m-
=0,
-
n=0
∴m=n=
,
+
=4
故选A
| AD |
| AB |
| BD |
| AB |
| 1 |
| 2 |
| BC |
| AB |
| 1 |
| 2 |
| AC |
| AB |
=
| 1 |
| 2 |
| AB |
| AC |
∵
| AP |
| AB |
| AQ |
| AC |
∴
| AE |
| 1 |
| 2 |
| AP |
| AQ |
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| AC |
∵
| AE |
| 1 |
| 2 |
| AD |
∴
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| AC |
| ||||
| 4 |
∴(
| 1 |
| 2 |
| 1 |
| 4 |
| AB |
| 1 |
| 4 |
| 1 |
| 2 |
| AC |
∵
| AB |
| AC |
∴
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
∴m=n=
| 1 |
| 2 |
| 1 |
| m |
| 1 |
| n |
故选A
点评:本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.
练习册系列答案
相关题目