题目内容
已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.
相切
已知2rad的圆心角所对的弦长为2,求这个圆心角所对的弧长.
如图,已知梯形ABCD中|AB|=2|CD|,点E满足,双曲线过C、D、E三点,且以A、B为焦点.当≤λ≤时,求双曲线离心率e的取值范围.
已知斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为________.
抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.
如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.
已知椭圆的中心在原点,焦点在y轴上,若其离心率为,焦距为8,则该椭圆的方程是________.
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.
已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1) 求双曲线的方程;
(2) 若△F1AB的面积等于6,求直线l的方程.