题目内容
抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为 .
已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为( )
A. B. C. D.
为了测量灯塔的高度,第一次在点处测得,然后向前走了20米到达点处测得,点在同一直线上,则灯塔的高度为 .
在平面直角坐标系 xoy 中,离心率为的椭圆C:(a>b>0)的左顶点为A,且A到右准线的距离为6,点P、Q是椭圆C上的两个动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)如图,当P、O、Q共线时,直线PA,QA分别与y轴交于M,N两点,求证:为定值;
(Ⅲ)设直线AP,AQ的斜率分别为k1,k2,当k1k2= -1时,证明直线PQ经过定点R.
定义在R上的奇函数f(x)满足f(x+4)= f(x),且在[0,2]?上f(x)= 则_______.
计算i+i3= (i为虚数单位).
如图,在中,是的中点,是的中点,的延长线交于.
(1)求的值;
(2)若的面积为,四边形的面积为,求的值.
“”是“”的 条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).
为了得到函数的图象,可以将函数的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位