题目内容


 在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是(  )

 

A.

2ab>c2

B.

a2+b2<c2

C.

2bc>a2

D.

b2+c2<a2


B.

【解析】在△ABC中,由cos(2B+C)+2sinAsinB<0可得,cos(B+B+C)+2sinAsinB<0.

∴cosBcos(B+C)﹣sinBsin(B+C)+2sinAsinB<0,即 cosBcos(π﹣A)﹣sinBsin(π﹣A)+2sinAsinB<0.

∴﹣cosBcosA﹣sinBsinA+2sinAsinB<0,﹣cosBcosA+sinBsinA<0.

即﹣cos(A+B)<0,cos(A+B)>0.

∴A+B<,∴C>,故△ABC形状一定是钝角三角形,故有 a2+b2<c2

故选 B.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网