题目内容
如果执行下列程序框图,那么输出的S=________.
420
解不等式:3≤|5-2x|<9.
已知e1,e2是两个单位向量,其夹角为θ,若向量m=2e1+3e2,则|m|=1的充要条件是( )
A.θ=π B.θ=
C.θ= D.θ=
设函数f(x)=x3-ax2-ax,g(x)=2x2+4x+c.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是( )
A.- B.
C.2 D.5
设函数f(x)=sin+cos ωx(其中ω>0),且函数f(x)的图象的两条相邻的对称轴间的距离为.
(1)求ω的值;
(2)将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间上的最大值和最小值.
已知全集U={0,1,2,3,4},A={1,2,3},B={2,4},则如图阴影部分表示的集合为( )
A.{0,2} B.{0,1,3}
C.{1,3,4} D.{2,3,4}
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
(1)若F为PE的中点,求证:BF∥平面ACE;
(2)求三棱锥P-ACE的体积.
已知集合A={y|y=-2x,x∈[2,3]},B={x|x2+3x-a2-3a>0}.若AB,求实数a的取值范围.