题目内容
已知函数f(x)=|x-2|-|x-5|.
(1)证明:-3≤f(x)≤3;
(2)求不等式f(x)≥x2-8x+15的解集.
(1)f(x)=|x-2|-|x-5|
=![]()
当2<x<5时,-3<2x-7<3.
所以-3≤f(x)≤3.
(2)由(1)可知,
当x≤2时,f(x)≥x2-8x+15的解集为空集;
当2<x<5时,f(x)≥x2-8x+15的解集为{x|5-
≤x<5};
当x≥5时,f(x)≥x2-8x+15的解集为{x|5≤x≤6}.
综上,不等式f(x)≥x2-8x+15的解集为{x|5-
≤x≤6}.
练习册系列答案
相关题目