题目内容
已知a>2,求证:log(a-1)a>loga(a+1)
分析:(法一)利用作差法:只要证明log(a-1)a-loga(a+1)=
-loga(a+1)=
>0即可
(法二)作商法:只要证明
=
=
>1即可
| 1 |
| loga(a-1) |
| 1-(loga(a-1))•(loga(a+1)) |
| loga(a-1) |
(法二)作商法:只要证明
| log(a-1)a |
| loga(a+1) |
| ||
| loga(a-1) |
| 1 |
| (loga(a-1))•(loga(a+1)) |
解答:证明(法一):∵log(a-1)a-loga(a+1)=
-loga(a+1)
=
.
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)•loga(a+1)≤[
]2
=
<
=1
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
=
=
由法1可知:loga(a-1)•loga(a+1)≤[
]2
=
<
=1
∴
>1.
故命题得证
| 1 |
| loga(a-1) |
=
| 1-(loga(a-1))•(loga(a+1)) |
| loga(a-1) |
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)•loga(a+1)≤[
| loga(a-1)+loga(a+1) |
| 2 |
=
| [loga(a2-1)]2 |
| 4 |
| [logaa2]2 |
| 4 |
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
| log(a-1)a |
| loga(a+1) |
| ||
| loga(a-1) |
| 1 |
| (loga(a-1))•(loga(a+1)) |
由法1可知:loga(a-1)•loga(a+1)≤[
| loga(a-1)+loga(a+1) |
| 2 |
=
| [loga(a2-1)]2 |
| 4 |
| [logaa2]2 |
| 4 |
∴
| 1 |
| loga(a-1)•loga(a+1) |
故命题得证
点评:本题主要考查了不等式的证明方法的常用方法:作差证明差大于0,作商证明商大于1.
练习册系列答案
相关题目