题目内容

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB-bcosA=$\frac{1}{3}$c,cosC=-$\frac{\sqrt{10}}{10}$,则tanB的值为$\frac{1}{2}$.

分析 acosB-bcosA=$\frac{1}{3}$c,利用正弦定理、和差公式可得:tanA=2tanB.由cosC=-$\frac{\sqrt{10}}{10}$,C∈(0,π),可得sinC=$\frac{3\sqrt{10}}{10}$,tanC=-3.利用-3=tanC=-tan(A+B),代入解出即可得出.

解答 解:∵acosB-bcosA=$\frac{1}{3}$c,
∴sinAcosB-sinBcosA=$\frac{1}{3}$sinC=$\frac{1}{3}$sin(A+B)=$\frac{1}{3}$sinAcosB+$\frac{1}{3}$cosAsinB,
∴tanA=2tanB.
∵cosC=-$\frac{\sqrt{10}}{10}$,C∈(0,π),
∴sinC=$\frac{3\sqrt{10}}{10}$,tanC=-3.
∴-3=tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=-$\frac{3tanB}{1-2ta{n}^{2}B}$,
化为:2tan2B+tanB-1=0,B为锐角,
解得tanB=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了三角函数求值、和差公式、正弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网