题目内容
15.(1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式(2)函数f(x)=$\frac{{{x^2}+2x+a}}{x}$,若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
分析 (1)由题意,可得设f(x)=ax2+bx+c,由f(0)=2,f(x+1)-f(x)=x-1,利用待定系数法求解即可.
(2)根据二次函数的性质求解即可.
解答 解:(1)由题意,设f(x)=ax2+bx+c,
∵f(0)=2,
∴c=2,
则f(x)=ax2+bx+2,
由f(x+1)-f(x)=x-1,即a(x+1)2+b(x+1)+2-ax2-bx-2=x-1
可得:a=$\frac{1}{2}$,b=$-\frac{3}{2}$,
∴f(x)的解析式为:f(x)=$\frac{1}{2}$x2$-\frac{3}{2}$x+2
(2)f(x)=$\frac{{{x^2}+2x+a}}{x}$,
∵f(x)>0恒成立,即$\frac{{{x^2}+2x+a}}{x}$>0在x∈[1,+∞),
∵x∈[1,+∞),
转化为x2+2x+a>0,
令g(x)=x2+2x+a=(x+1)2+a-1,
其对称轴x=-1,开口向上,
可知x在(-1,+∞)是单调递增.
∴只需g(1)>0即可.
得3+a>0,
∴a>-3
故得实数a的取值范围(-3,+∞).
点评 本题考查了函数解析式的求法,利用了待定系数法,同时考查了二次函数的恒成立问题.属于基础题.
练习册系列答案
相关题目
3.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosB}{b}$=-$\frac{3cosC}{c}$,则角A的最大值是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
3.
如图所示,给出下列条件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能够单独判定△ABC∽△ACD的个数为( )
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能够单独判定△ABC∽△ACD的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
5.2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
| 车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.