题目内容
9.实数x,y满足$\left\{\begin{array}{l}x-y+1>0\\ x+y-3≥0\\ 2x+y-7≤0\end{array}\right.若x-2y≥m$恒成立,则实数m的取值范围是(-∞,-4].分析 由约束条件作出可行域,令z=x-2y,化为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得最小值,则答案可求.
解答 解:由约束条件作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y+1=0}\\{2x+y-7=0}\end{array}\right.$,解得A(2,3),
令z=x-2y,化为y=$\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线y=$\frac{x}{2}-\frac{z}{2}$过A时,直线在y轴上的截距最大,z有最小值为-4.
∴满足x-2y≥m的实数m的取值范围为:(-∞,-4].
故答案为:(-∞,-4].
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
19.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)<0,则下列结论正确的是( )
| A. | 2f(ln2)>3f(ln3) | B. | 2f(ln2)<3f(ln3) | C. | 2f(ln2)≥3f(ln3) | D. | 2f(ln2)≤3f(ln3) |
4.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )

| A. | a>0,b>0,c>0,d<0 | B. | a>0,b>0,c<0,d<0 | C. | a<0,b<0,c>0,d>0 | D. | a>0,b>0,c>0,d>0 |
14.已知集合A={x|(x+1)(x-2)≥0},B={x|log3(2-x)≤1},则A∩(∁RB)=( )
| A. | ∅ | B. | {x|x≤-1,x>2} | C. | {x|x<-1} | D. | {x|x<-1,x≥2} |
18.设α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且$\frac{sinα}{cosα}$=$\frac{cosβ}{1-sinβ}$,则( )
| A. | 2α+β=$\frac{π}{2}$ | B. | 2α-β=$\frac{π}{2}$ | C. | α+2β=$\frac{π}{2}$ | D. | α-2β=$\frac{π}{2}$ |
19.已知p:?x>0,ex-ax<1成立,q:函数f(x)=-(a-1)x是减函数,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |