题目内容

11.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4.
(1)若l的参数方程中的$t=-\sqrt{2}$时,得到M点,求M的极坐标和曲线C直角坐标方程;
(2)若点P(0,2),l和曲线C交于A,B两点,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

分析 (1)利用极坐标与直角坐标互化的方法得到结论;
(2)利用参数的几何意义,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

解答 解:(1)l的参数方程中的$t=-\sqrt{2}$时,M(-1,1),极坐标为$M(\sqrt{2},\frac{3}{4}π)$,
曲线C的极坐标方程为ρ=4,曲线C的直角坐标方程:x2+y2=16…(5分)
(2)由${(\frac{{\sqrt{2}}}{2}t)^2}+{(2+\frac{{\sqrt{2}}}{2}t)^2}=16$得${t^2}+2\sqrt{2}t-12=0$,${t_1}+{t_2}=-2\sqrt{2},{t_1}•{t_2}=-12$$\frac{1}{|PA|}+\frac{1}{|PB|}=\frac{{|{t_1}|+|{t_2}|}}{{|{t_1}•{t_2}|}}=\frac{{\sqrt{{{(-2\sqrt{2})}^2}-4•(-12)}}}{12}=\frac{{\sqrt{14}}}{6}$…(10分)

点评 本题考查极坐标与直角坐标互化,考查参数方程的运用,考查参数的几何意义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网