题目内容
在△ABC中,若c2=(a-b)2+6,∠C=
,求S△ABC.
| π |
| 3 |
考点:余弦定理
专题:计算题
分析:利用余弦定理列出关系式,把cosC代入得到关系式,结合已知等式求出ab的值,再由sinC的值,利用三角形面积公式即可求出三角形ABC面积.
解答:
解:∵在△ABC中,∠C=
,
∴由余弦定理得:c2=a2+b2-2abcosC=a2+b2-ab,
∵c2=(a-b)2+6=a2+b2-2ab+6,
∴a2+b2-ab=a2+b2-2ab+6,即ab=6,
则S△ABC=
absinC=
.
| π |
| 3 |
∴由余弦定理得:c2=a2+b2-2abcosC=a2+b2-ab,
∵c2=(a-b)2+6=a2+b2-2ab+6,
∴a2+b2-ab=a2+b2-2ab+6,即ab=6,
则S△ABC=
| 1 |
| 2 |
3
| ||
| 2 |
点评:此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目
已知f(x)=x2-3x,则f′(0)=( )
| A、△x-3 |
| B、(△x)2-3△x |
| C、-3 |
| D、0 |
下列函数中是偶函数的是( )
| A、y=x3 |
| B、y=cosx |
| C、y=2x |
| D、y=lnx |
函数f(x)=x2-2tx-4(t∈R)在闭区间[0,1]上的最小值记为g(t).则g(t)的函数解析式( )
A、g(t)=
| ||||||
| B、g(t)=-t2+2 | ||||||
| C、g(t)=-t2+2t | ||||||
| D、g(t)=-t2+2t+2 |