题目内容

15.函数 f(x)=ex+a,g(x)=|ln(-x)|,若x1,x2都满足f(x)=g(x),则(  )
A.x1•x2>eB.1<x1•x2<eC.0<x1x2<$\frac{1}{e}$D.$\frac{1}{e}<{x_1}{x_2}$<1

分析 根据题意,得出函数f(x)与g(x)在定义域(-∞,0)上有两个交点(x1,0)和(x2,0);
画出图形,结合图形得出0>x1>-1>x2,列出方程组$\left\{\begin{array}{l}{{e}^{{x}_{1}}+a=-ln({-x}_{1})}\\{{e}^{{x}_{2}}+a=ln({-x}_{2})}\end{array}\right.$,
从而得出ln(x1x2)=${e}^{{x}_{2}}$-${e}^{{x}_{1}}$;求出${e}^{{x}_{2}}$-${e}^{{x}_{1}}$的取值范围,即得x1x2的取值范围.

解答 解:∵f(x)=ex+a,g(x)=|ln(-x)|=$\left\{\begin{array}{l}{ln(-x),x≤-1}\\{-ln(-x),-1<x<0}\end{array}\right.$,
且x1,x2都满足f(x)=g(x),
∴函数f(x)与g(x)在定义域(-∞,0)上有两个交点(x1,0)和(x2,0);如图所示,

不妨设0>x1>-1>x2
则$\left\{\begin{array}{l}{{e}^{{x}_{1}}+a=-ln({-x}_{1})}\\{{e}^{{x}_{2}}+a=ln({-x}_{2})}\end{array}\right.$,
∴${e}^{{x}_{1}}$-${e}^{{x}_{2}}$=-ln(-x1)-ln(-x2)=-ln(x1x2),
即ln(x1x2)=${e}^{{x}_{2}}$-${e}^{{x}_{1}}$;
∵0>x1>-1>x2
∴-1<${e}^{{x}_{2}}$-${e}^{{x}_{1}}$<0,
即-1<ln(x1x2)<0,
∴$\frac{1}{e}$<x1x2<1.
故选:D.

点评 本题考查了函数的图象与性质的应用问题,也考查了数形结合的解题思想,转化思想,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网