题目内容

解不等式:
(1)
(x-1)2(x+3)3(2-x)
x+4
>0

(2)
3x-5
x2+2x-3
≤2
分析:(1)不等式即
(x-1)2(x+3)3(x-2)
x+4
 <0
,用穿根法求得它的解集.
(2)不等式即
(2x-1)(x+1)
(x+3)(x-1)
≥0
,用穿根法(需要验根)求得它的解集.
解答:解:(1)不等式即
(x-1)2(x+3)3(x-2)
x+4
 <0
,不等式的根有-4,-3,2,1,其中1为二重根,-3为三重根.
用穿根法求得解集为 {x|-4<x<-3,或  x>2}. 
      
(2)由不等式可得
2x2+x-1
x2+2x-3
≥0,即
(2x-1)(x+1)
(x+3)(x-1)
≥0
,不等式的根有-3,-1,
1
2
,1,且都是一重根.
用穿根法(需要验根)求得解集为 {x|x<-3,或-1≤x≤
1
2
,或 x>1}.
点评:本题主要考查用穿根法解分式不等式和高次不等式,对于含有≤或≥的不等式,要注意验根,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网