题目内容
6.| A. | 4,4 | B. | 5,4 | C. | 4,5 | D. | 5,5 |
分析 由茎叶图中甲组的数据,根据它们的众数,求出x的值,得出甲组数据的中位数,再求乙组数据的平均数,即得y的值.
解答 解:若甲组数据的众数为124,
则x=4,甲的中位数是:124,
故$\frac{1}{6}$(114+118+122+120+y+127+138)=124,
解得:y=5,
故选:C.
点评 本题考查了茎叶图的应用问题,解题时应根据茎叶图的数据,求出它们的平均数与中位数,从而求出x、y的值.
练习册系列答案
相关题目
14.以$F(0,\frac{p}{2})(p>0)$为焦点的抛物线C的准线与双曲线x2-y2=2相交于M,N两点,若△MNF为正三角形,则抛物线C的方程为( )
| A. | ${y^2}=2\sqrt{6}x$ | B. | ${y^2}=4\sqrt{6}x$ | C. | ${x^2}=2\sqrt{6}y$ | D. | ${x^2}=4\sqrt{6}y$ |
1.设双曲线$\frac{x^2}{m}+\frac{y^2}{n}=1$的离心率为$\frac{{2\sqrt{3}}}{3}$,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程是( )
| A. | $\frac{y^2}{3}-{x^2}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | C. | ${y^2}-\frac{x^2}{3}=1$ | D. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ |
18.已知集合A={1,3},$B=\{x|0<lg(x+1)<\frac{1}{2},x∈Z\}$,则A∪B=( )
| A. | {1,3} | B. | {1,2,3} | C. | {1,3,4} | D. | {1,2,3,4} |
15.“a<-1”是“直线ax+y-3=0的倾斜角大于$\frac{π}{4}$”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |