题目内容
14.已知{an}是等比数列,a1=2,a4=16,则数列{an}的公比q等于( )| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
分析 利用等比数列的通项公式即可得出.
解答 解:由等比数列的性质可得:a4=${a}_{1}{q}^{3}$,∴16=2q3,解得q=2.
故选:A.
点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.下列命题是真命题的为( )
| A. | ?x∈R,2x>1 | B. | ?x∈R,x2>0 | C. | ?x∈R,2x<1 | D. | ?x∈R,x2<0 |
9.
某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
(1)写出a,b,x,y的值.
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学的成绩在[90,100]内的概率;
②求所抽取的2名同学来自同一组的概率.
| 组别 | 分组 | 频数 | 频率 |
| 第1组 | [50,60) | 8 | 0.16 |
| 第2组 | [60,70) | a | ■ |
| 第3组 | [70,80) | 20 | 0.40 |
| 第4组 | [80,90) | ■ | 0.08 |
| 第5组 | [90,100] | 2 | b |
| 合计 | ■ | ■ |
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学的成绩在[90,100]内的概率;
②求所抽取的2名同学来自同一组的概率.
19.若关于x的一元二次方程x2+ax-2=0有两个不相等的实根x1,x2,且x1<-1,x2>1,则实数a的取值范围是( )
| A. | a<-1 | B. | a>1 | C. | -1<a<1 | D. | a>2$\sqrt{2}$或a<-2$\sqrt{2}$ |
6.已知a>b,c∈R,则( )
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | |a|>|b| | C. | a3>b3 | D. | ac>bc |
3.函数$f(x)=\frac{{\;{2^x}}}{{\sqrt{1-x}}}+{log_3}(2x-1)$的定义域是( )
| A. | $(\frac{1}{2}\;,\;1)$ | B. | $[\frac{1}{2}\;,\;1)$ | C. | (1,+∞) | D. | $(\frac{1}{2},\;1]$ |