题目内容

在平面上,
AB1
AB2
,|
OB1
|=|
OB2
|=1,
AP
=
AB1
+
AB2
,若|
OP
|<
1
2
,则|
OA
|的取值范围是
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:根据
AB1
AB2
,|
OB1
|=|
OB2
|=1,
AP
=
AB1
+
AB2
,可知:四边形AB1PB2是一个矩形.以AB1,AB2所在直线为坐标轴建立直角坐标系.设|AB1|=a,|AB2|=b.点O的坐标为(x,y),点P(a,b).根据向量的坐标运算、模的计算公式、不等式的性质即可得出.
解答: 解:根据
AB1
AB2
AP
=
AB1
+
AB2
,可知:四边形AB1PB2是一个矩形.
以AB1,AB2所在直线为坐标轴建立直角坐标系.设|AB1|=a,|AB2|=b.
点O的坐标为(x,y),点P(a,b).
∵|
OB1
|=|
OB2
|=1,
(x-a)2+y2=1
x2+(y-b)2=1

变形为
(x-a)2=1-y2
(y-b)2=1-x2

∵|
OP
|<
1
2
,∴(x-a)2+(y-b)2
1
4

∴1-x2+1-y2
1
4

∴x2+y2
7
4
.①
∵(x-a)2+y2=1,∴y2≤1.
同理,x2≤1.
∴x2+y2≤2.②
由①②可知:
7
4
<x2+y2≤2.
∵|
OA
|=
x2+y2

7
2
|
OA|
2

故答案为(
7
2
2
].
点评:本题考查了向量的平行四边形法则、矩形的定义、向量的坐标运算、模的计算公式、不等式的性质,考查了数形结合的思想方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网