题目内容

6.在△ABC中,“A=B”是“sinAcosA=sinBcosB”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由sinAcosA=sinBcosB,可得:sin2A=sin2B,由于A,B∈(0,π),可得2A=2B,或2A+2B=π,即可判断出结论.

解答 解:由sinAcosA=sinBcosB,可得:sin2A=sin2B,
∵A,B∈(0,π),∴2A=2B,或2A+2B=π,即A=B,或A+B=$\frac{π}{2}$,
∴“A=B”是“sinAcosA=sinBcosB”的充分不必要条件.
故选:A.

点评 本题考查了倍角公式、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网