题目内容
8.已知△ABC中,A、B、C所对的边分别为a、b、c,且bsinB=(sinA-sinC)(a+c)数列an=n2n-1(|sinnA|+|cosnA|),(1)求A;
(2)求数列{an}的前n项和Sn.
分析 (1)由bsinB=(sinA-sinC)(a+c),利用正弦定理可得:b2=(a-c)(a+c),再利用勾股定理的逆定理即可得出.
(2)由(1)可得:数列an=n•2n-1(|sinnA|+|cosnA|)=n•2n-1.再利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)△ABC中,∵bsinB=(sinA-sinC)(a+c),
∴b2=(a-c)(a+c),即a2=b2+c2,
∴$A=\frac{π}{2}$.
(2)由(1)可得:数列an=n•2n-1(|sinnA|+|cosnA|)=n•2n-1.
∴数列{an}的前n项和Sn=1+2×2+3×22+…+n•2n-1,
2Sn=2+2×22+3×23+…+(n-1)•2n-1+n•2n,
∴-Sn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n=(1-n)•2n-1,
∴Sn=(n-1)•2n+1.
点评 本题考查了正弦定理、勾股定理的逆定理、“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.设平面区域D是由双曲线y2-$\frac{{x}^{2}}{4}$=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则x+y的最小值为( )
| A. | -1 | B. | 1 | C. | 0 | D. | 3 |
19.某地植被面积 x(公顷)与当地气温下降的度数y(℃)之间有如下的对应数据:
(1)请用最小二乘法求出y关于x的线性回归方程$\widehaty=\hat bx+\hat a$;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少℃?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x(公顷) | 20 | 40 | 50 | 60 | 80 |
| y(℃) | 3 | 4 | 4 | 4 | 5 |
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少℃?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
13.已知函数f(x)=x2-$\frac{a}{x}$(a∈R),则下列结论正确的是( )
| A. | ?a∈R,f(x)是偶函数 | B. | ?a∈R,f(x)是奇函数 | ||
| C. | ?a∈(0,+∞),f(x)在(-∞,0)上是增函数 | D. | ?a∈(0,+∞),f(x)在(0,+∞)上是减函数 |
20.已知函数f(x)=(x+1)ln(x+1),若函数h(x)=2f(x-1)与y=x3-mx的图象在区间[$\frac{1}{e}$,e]上有2个不同的交点.则m的取值范围是( )
| A. | [1,2] | B. | (1,2+$\frac{1}{{e}^{2}}$] | C. | (1+$\frac{1}{e}$,3) | D. | (2,4+e] |
18.已知$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(-3,1),则$\overrightarrow{AB}$=( )
| A. | (4,-3) | B. | (-4,3) | C. | (-2,-1) | D. | (2,1) |