题目内容
已知某几何体的三视图如右图所示,则该几何体的外接球表面积为( )
A. B.32 C. D.
下列四组函数,表示同一函数的是( )
A.,
B.,
C.,
D.,
(本小题满分12分)已知函数在x=1处的切线方程为x-y=1.
(1)求f(x)的表达式;
(2)若f(x)≥g(x)恒成立,则称f(x)为g(x)的一个“上界函数”,当(1)中的函数f(x)为函数g(x)=lnx(t∈R)的一个上界函数时,求实数t的取值范围;
(3)当m>0时,对于(1)中的f(x),讨论F(x)= f(x)+在区间(0,2)上极值点的个数.
已知函数f(x)=,且f(x)在R上递减,则实数a的取值范围 .
如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.
以上四个命题中,正确的命题序号是( )
A.①②③ B.③④ C.②④ D.②③④
已知命题p:|x-1|≥2,命题q:x∈Z,若“p且q”与“非q”同时为假命题,则满足条件的x为( )
A.{x|x≥3或x≤-1,x∈Z}
B.{x|-1≤x≤3,x∈Z}
C.{0,1,2}
D.{-1,0,1,2,3}
(本小题12分)已知函数满足:对于任意都有,且时,,.
(1)证明函数是奇函数;
(2)判断并证明函数在上的单调性,然后求函数在上的最值;
(3)解不等式:
已知点,且,则实数的值是( ).
A.或4 B.或2 C.3或 D.6或
(本题满分14分)已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若△ABC面积为,c=2,A=60º,求a,b的值;
(2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.