题目内容

已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=
an+2
an
,cn=anan+12
(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;
(2)若数列{cn}为等比数列,且bn+1≥bn,求证:数列{an}为等比数列.
考点:等比关系的确定,等差关系的确定
专题:等差数列与等比数列
分析:(1)由数列{an}为等比数列可得
an+1
an
=q,结合cn=anan+12可得:
cn+1
cn
=
an+1
a
2
n+2
an
•a
2
n+1
=q3为常数,即数列{cn}为等比数列;
(2)由数列{cn}是等比数列可得
cn+1
cn
=q,即
cn+1
cn
=
an+1
a
2
n+2
an
•a
2
n+1
=
a
2
n+2
an
•a
 
n+1
=q,结合bn=
an+2
an
可得bn+22=bn+1•bn由bn+1≥bn,可得:bn+2=bn+1=bn,即
an+3
an+1
=
an+2
an
,即an+3=an+1
an+2
an
,进而an+12=an•an+2,即数列{an}为等比数列.
解答: 证明:(1)因为数列{an}为等比数列,所以
an+1
an
=q(q为常数),
又因为cn=anan+12
所以
cn+1
cn
=
an+1
a
2
n+2
an
•a
2
n+1
=q3为常数,所以数列{cn}为等比数列;
(2)因为数列{cn}是等比数列,所以
cn+1
cn
=q(q为常数),
所以
cn+1
cn
=
an+1
a
2
n+2
an
•a
2
n+1
=
a
2
n+2
an
•a
 
n+1
=q(q为常数),
a
2
n+2
an
•a
 
n+1
=
a
2
n+4
an+2
•a
 
n+3

所以
a
2
n+4
a
2
n+2
=
an+2an+3
an
•a
 
n+1

∵bn=
an+2
an

故bn+22=bn+1•bn
因为bn+1≥bn,所以bn+2≥bn+1,则bn+22≥bn+12≥bn+1•bn
所以bn+2=bn+1=bn
an+3
an+1
=
an+2
an
,即an+3=an+1
an+2
an

因为数列{cn}是等比数列,所以
cn+1
cn
=
cn+2
cn+1
,即
a
2
n+2
an
•a
 
n+1
=
a
2
n+3
an+1
•a
 
n+2

把an+3=an+1
an+2
an
代入化简得an+12=an•an+2
所以数列{an}为等比数列.
点评:本题考查的知识点是等比数列关系的确定,转化比较困难,运算量比较大,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网