ÌâÄ¿ÄÚÈÝ
2£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®£¨1£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÇúÏßC½»xÖáÓÚA¡¢BÁ½µã£¬ÇÒµãAµÄºá×ø±êСÓÚµãBµÄºá×ø±ê£¬PΪֱÏßlÉϵ͝µã£¬Çó¡÷PABÖܳ¤µÄ×îСֵ£®
·ÖÎö £¨1£©ÓÉÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬µÃ¦Ñcos¦È-¦Ñsin¦È=1£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÇúÏßCµÄ²ÎÊý·½³ÌÄÜÇó³öCµÄÆÕͨ·½³Ì£®
£¨2£©ÇúÏßC±íʾԲÐÄ£¨5£¬0£©£¬°ë¾¶r=1µÄÔ²£¬Áîy=0£¬µÃA£¨4£¬0£©£¬B£¨6£¬0£©£¬×÷A¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãA1µÃA1£¨1£¬3£©£¬µ±PΪA1BÓëlµÄ½»µãʱ£¬¡÷PABµÄÖܳ¤×îС£¬ÓÉ´ËÄÜÇó³ö¡÷PABÖܳ¤µÄ×îСֵ£®
½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$£¬
¡àÓÉÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬µÃ$¦Ñcos¦Èsin\frac{¦Ð}{4}-¦Ñsin¦Ècos\frac{¦Ð}{4}$=$\frac{\sqrt{2}}{2}$£¬¡£¨2·Ö£©
¼´¦Ñcos¦È-¦Ñsin¦È=1£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£¬¼´x-y-1=0£¬¡£¨3·Ö£©
¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÓÉÇúÏßCµÄ²ÎÊý·½³ÌµÃCµÄÆÕͨ·½³ÌΪ£º£¨x-5£©2+y2=1£®¡£¨5·Ö£©
£¨2£©ÓÉ£¨1£©ÖªÇúÏßC±íʾԲÐÄ£¨5£¬0£©£¬°ë¾¶r=1µÄÔ²£¬
Áîy=0£¬µÃx=4»òx=6£®
¡àAµã×ø±êΪ£¨4£¬0£©£¬Bµã×ø±êΪ£¨6£¬0£©£® ¡£¨7·Ö£©
×÷A¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãA1µÃA1£¨1£¬3£©£®¡£¨8·Ö£©
ÓÉÌâÉèÖªµ±PΪA1BÓëlµÄ½»µãʱ£¬¡÷PABµÄÖܳ¤×îС£¬
¡à¡÷PABÖܳ¤µÄ×îСֵΪ£º|AP|+|PB|+|AB|=|A1B|+|AB|=$\sqrt{34}+2$£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÖܳ¤µÄ×îСֵµÄÇ󷨣¬¿¼²é´úÊýʽµÄÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄÐÔÖʼ°»¥»¯¹«Ê½µÄºÏÀíÔËÓã®
| A£® | 8¦Ð | B£® | 18¦Ð | C£® | 24¦Ð | D£® | 8$\sqrt{6}$¦Ð |
| A£® | ?x¡ÊR£¬¶¼ÓÐx2£¼1 | B£® | ?x¡ÊR£¬Ê¹µÃx2¡Ý1 | ||
| C£® | ?x¡ÊR£¬¶¼ÓÐx¡Ü-1»òx¡Ý1 | D£® | ?x¡ÊR£¬Ê¹µÃx2£¾1 |
| A£® | $\frac{3}{8}$ | B£® | $\frac{3}{16}$ | C£® | $\frac{¦Ð}{8}$ | D£® | $\frac{¦Ð}{16}$ |
| A£® | 3¦Ð | B£® | 2¦Ð | C£® | ¦Ð | D£® | 4¦Ð |
| A£® | 8¦Ð | B£® | 16¦Ð | C£® | 32¦Ð | D£® | 36¦Ð |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |