题目内容

18.在△ABC中,角A,B,C的对边分别为a,b,c,且cos2$\frac{B+C}{2}$=$\frac{1}{5}$,△ABC的面积为4.
(Ⅰ)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的值;
(Ⅱ)若2sinB=5sinC,求a的值.

分析 (I)由cos2$\frac{B+C}{2}$=$\frac{1}{5}$,可得$\frac{1+cos(B+C)}{2}$=$\frac{1}{5}$,化为cosA=$\frac{3}{5}$,A∈(0,π),利用sinA=$\sqrt{1-co{s}^{2}A}$即可得出.利用S△ABC=4=$\frac{1}{2}$bcsinA,可得bc.即可得出$\overrightarrow{AB}•\overrightarrow{AC}$.
(II)由2sinB=5sinC,得2b=5c,又bc=10,解得b,c.再利用余弦定理即可得出.

解答 解:(I)在△ABC中,∵cos2$\frac{B+C}{2}$=$\frac{1}{5}$,∴$\frac{1+cos(B+C)}{2}$=$\frac{1}{5}$,
∴$\frac{1-cosA}{2}=\frac{1}{5}$,解得cosA=$\frac{3}{5}$,A∈(0,π),
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$.
∵S△ABC=4=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{4}{5}$,可得bc=10.
$\overrightarrow{AB}•\overrightarrow{AC}$=bccosA=10×$\frac{3}{5}$=6.
(II)由2sinB=5sinC,得2b=5c,又bc=10,解得b=5,c=2.
∴a2=b2+c2-2bccosA=17,
∴a=$\sqrt{17}$.

点评 本题考查了余弦定理、倍角公式、三角函数的面积计算公式、同角三角函数,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网