题目内容
的值为
A. B. C. D.
D
已知椭圆:,直线交椭圆于两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.
已知椭圆:()过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且,再过作直线.证明:直线恒过定点,并求出该定点的坐标.
如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3, H是CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求直线DH与平面所成角的正弦值;
(Ⅲ)求二面角的大小.
如果直线:与直线:垂直,那么的值为
已知函数在上的最大值是3,那么等于
计算的结果为 .
已知函数在上是单调函数,且满足对任意,都有,则的值是( )
A.85 B.82 C.80 D.76
若函数,则是( )
A.仅有最小值的奇函数 B.仅有最大值的偶函数
C.既有最大值又有最小值的偶函数 D.非奇非偶函数