题目内容

8.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是 (  )
A.若f(x1)≤f(x)≤f(x2)对?x∈R恒成立,则|x2-x1|min
B.y=f(x)的图象关于点(-$\frac{2π}{3}$,0)中心对称
C.函数f(x)的单调区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
D.函数y=|f(x)|(x∈R)的图象相邻两条对称轴之间的距离是$\frac{π}{2}$

分析 对于A:根据条件先求出函数的解析式,根据条件判断f(x1)为函数的最小值,f(x2)为函数的最大值,即可;
对于B:根据函数的对称性进行判断;
对于C:求出角的范围,结合三角函数的单调性进行判断;
对于D:根据函数的对称性以及对称轴之间的关系进行判断.

解答 解:∵在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,
∴($\frac{π}{6}$,$\frac{π}{2}$)是函数的一个单调区间,区间长度为$\frac{π}{2}$-$\frac{π}{6}$=$\frac{π}{3}$,
即函数的周期T≥2×$\frac{π}{3}$=$\frac{2π}{3}$,即$\frac{2π}{ω}$≥$\frac{2π}{3}$,则0<ω≤3.
∵f(0)=f($\frac{π}{6}$),
∴x=$\frac{0+\frac{π}{6}}{2}$=$\frac{π}{12}$是函数的一条对称轴,
∵-f($\frac{π}{2}$)=f($\frac{π}{6}$),
∴x=$\frac{\frac{π}{2}+\frac{π}{6}}{2}$=$\frac{π}{3}$,即($\frac{π}{3}$,0)是函数的一个对称中心,
则 $\frac{π}{12}$ω+φ=$\frac{π}{2}$①,$\frac{π}{3}$ω+φ=π②,由①②解得ω=2,φ=$\frac{π}{3}$,
即f(x)=Asin(2x+$\frac{π}{3}$),函数的周期T=π,
对于A若f(x1)≤f(x2)对任意实数x恒成立,
则f(x1)为函数的最小值,f(x2)为函数的最大值,
则|x2-x1|=$\frac{T}{2}$•k=k•$\frac{π}{2}$,即x2-x1必定是$\frac{π}{2}$的整数倍正确,故A错误;
对于Bx=-$\frac{2π}{3}$时,f(x)=Asin(-$\frac{5π}{3}$),不对称,故B错误;
对于C:当x∈[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z),
则2x∈[2kπ+$\frac{π}{6}$,2kπ+$\frac{7π}{12}$](k∈Z),
2x+$\frac{π}{3}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z),
则此时函数单调递减,
即函数f(x)在每一个[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有严格的单调性正确,
故C正确.
对于D:对于函数y=|f(x)|(x∈R)的图象,
则当x=-$\frac{5π}{12}$时,y=|Asin(2×(-$\frac{5π}{12}$)+$\frac{π}{3}$)=|Asin($\frac{π}{3}$-$\frac{5π}{6}$)|=|Asin$\frac{π}{2}$|=A,为最值,则-$\frac{5π}{12}$一定是一条对称轴,
且相邻两条对称轴之间的距离是$\frac{T}{4}$=$\frac{π}{4}$;故D错误;
故选:C.

点评 本题主要考查与三角函数有关的命题的真假判断,根据条件求出函数的解析式是解决本题的关键.综合性较强,运算量较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网