题目内容
正三角形ABC的边长为2.将它沿高AD翻折,使得平面ABD⊥平面ADC,则三棱锥B-ADC的外接球的表面积为________.
5π
分析:三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积即可.
解答:根据题意可知三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,
所以求出长方体的对角线的长为:
所以球的直径是
,半径为
∴三棱锥B-ADC的外接球的表面积为
故答案为:5π
点评:本题考查了外接球的表面积的度量,解题关键将三棱锥B-ACD的外接球扩展为长方体的外接球,属于中档题.
分析:三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积即可.
解答:根据题意可知三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,
所以求出长方体的对角线的长为:
所以球的直径是
∴三棱锥B-ADC的外接球的表面积为
故答案为:5π
点评:本题考查了外接球的表面积的度量,解题关键将三棱锥B-ACD的外接球扩展为长方体的外接球,属于中档题.
练习册系列答案
相关题目
已知正三角形ABC的边长为a,那么三角形ABC根据斜二测画法得到的平面直观图三角形A′B′C′的面积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|