题目内容
8.若函数$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}+$${log_a}({\frac{1-x}{1+x}})$(a>0,a≠1),f(m)=n,m∈(-1,1),则f(-m)=( )| A. | n | B. | -n | C. | 0 | D. | 不存在 |
分析 求出-1<x<1,f(-x)=-f(x),由此利用f(m)=n,m∈(-1,1),能求出f(-m).
解答 解:∵函数$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}+$${log_a}({\frac{1-x}{1+x}})$(a>0,a≠1),
∴-1<x<1,
f(-x)=$\frac{{a}^{-x}-1}{{a}^{-x}+1}$+loga($\frac{1+x}{1-x}$)
=$\frac{1-{a}^{x}}{1+{a}^{x}}$-loga($\frac{1-x}{1+x}$)
=-$\frac{{a}^{x}-1}{{a}^{x}+1}$-$lo{g}_{a}(\frac{1+x}{1-x})$=-f(x),
∵f(m)=n,m∈(-1,1),
∴f(-m)=-f(m)=-n.
故选:B.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
12.给出下列两个命题:命题p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为$\frac{π}{4}$.命题q:若函数f(x)=x+$\frac{4}{x},({x∈[{1,2}]})$,则f(x)的最小值为4.则下列命题为真命题的是( )
| A. | p∧q | B. | ¬p | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
16.已知A、B是圆O:x2+y2=16的两个动点,|$\overrightarrow{AB}$|=4,$\overrightarrow{OC}$=$\frac{5}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$.若M是线段AB的中点,则$\overrightarrow{OC}$•$\overrightarrow{OM}$的值为( )
| A. | 8+4$\sqrt{3}$ | B. | 8-4$\sqrt{3}$ | C. | 12 | D. | 4 |
3.已知P为圆C:x2+y2=π2内任意一点,则点P落在函数f(x)=sinx的图象与x轴围成的封闭区域内的概率为( )
| A. | 0 | B. | 1 | C. | $\frac{2}{π^3}$ | D. | $\frac{4}{π^3}$ |
20.某市政协课题组成员为了解中学生的身体素质情况,决定在该市高二的14400名男生和9600名女生中按分层抽样的方法抽取30名学生,对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余不参加体育锻炼),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),调查结果如表:
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为“课余不参加体育锻炼“与性别有关;
(3)从抽出的女生中再抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的均值(即数学期望).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| A类 | B类 | C类 | |
| 男生 | 5 | x | 5 |
| 女生 | y | 5 | 3 |
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为“课余不参加体育锻炼“与性别有关;
| 男生 | 女生 | 总计 | |
| 课余不参加体育锻炼 | |||
| 课余参加体育锻炼 | |||
| 总计 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |
17.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,以双曲线C的实轴为直径的圆Ω与双曲线的渐近线在第一象限交于点P,若kFP=-$\frac{b}{a}$,则双曲线C的渐近线方程为( )
| A. | y=±x | B. | y=±2x | C. | y=±3x | D. | y=±4x |
18.“|x-1|+|x+2|≤5”是“-3≤x≤2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |