题目内容

如图1,矩形ABCD中,AB=,BC=2,Q为AD的中点,将△ABQ、△CDQ沿BQ、CQ折起,使得AQ、DQ重合,记A、D重合的点为P,如图2。

(1)求二面角B-PQ-C的大小;
(2)证明:PQ⊥BC;
(3)求直线PQ与平面BCQ所成的角的大小。
(1)解:在矩形ABCD中,AB⊥AQ,DC⊥DQ,
所以,在折起后,有PB⊥PQ,APC⊥PQ,
所以∠BPC就是所求的二面角的平面角,
因为,BC=2,
所以
即△PBC是直角三角形,所以 ∠BPC=90°。
(2)证明:由已知可得△BCQ、△BCP都是等腰三角形,
取BC的中点M,连结PM、QM, 则有PM⊥BC,QM⊥BC,
因为PM∩QM=M,平面PQM,平面PQM,
所以BC⊥平面PQM,
因为平面PQM,
所以PQ⊥BC。
(3)由(2)知BC⊥平面PQM,而平面BCQ,
所以平面PQM⊥平面BCQ,
又平面PQM∩平面BCQ=QM,
所以,作PN⊥QM,有PN⊥平面BCQ,
所以,QN是PQ在平面BCQ内的射影,
所以,∠PQN就是所求的角,
在等腰△BCQ中,,MC=1,所以得
在等腰△BCP中,易得PM=1,
所以△PQM是等腰直角三角形,于是∠PQN=∠PQM=45°。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网