题目内容
14.已知函数f(x)=x2ex,则f(x)的极大值为$\frac{4}{{e}^{2}}$,若f(x)在[t,t+1]上不单调,则t的取值范围是(-3,-2)∪(-1,0).分析 ①f′(x)=2xex+x2ex=x(x+2)ex,令f′(x)=0,解得x=0,-2,列出表格可得单调性极值.
②由表格可知:函数f(x)在(-2,0)上单调递减,(-∞,-2),(0,+∞)上单调递增,由于函数f(x)=x2ex在区间[t,t+1]上不单调,可得t<-2<t+1或t<0<t+1,解出即可得出.
解答 解:①f′(x)=2xex+x2ex=x(x+2)ex,
令f′(x)=0,解得x=0,-2,
可得:
| x | (-∞,-2) | -2 | (-2,0) | 0 | (0,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
②由表格可知:函数f(x)在(-2,0)上单调递减,(-∞,-2),(0,+∞)上单调递增,
∴0或-2是函数的极值点,
∵函数f(x)=x2ex在区间[t,t+1]上不单调,
∴t<-2<t+1或t<0<t+1,
∴-3<t<-2或-1<t<0,
实数t的取值范围是:(-3,-2)∪(-1,0).
故答案为:$\frac{4}{{e}^{2}}$,(-3,-2)∪(-1,0),
点评 本题主要考查了利用导数研究函数的单调性极值,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.设函数f(x)=ex-e-x-2x,下列结论正确的是( )
| A. | f(2x)min=f(0) | B. | f(2x)max=f(0) | ||
| C. | f(2x)在(-∞,+∞)上递减,无极值 | D. | f(2x)在(-∞,+∞)上递增,无极值 |
5.在四面体P-ABC的四个面中,是直角三角形的面至多有( )个.
| A. | 0个 | B. | 1个 | C. | 3个 | D. | 4个 |
2.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )
| A. | (-∞,-2)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
6.设函数f(x)的导函数为f′(x),且f′(x)<f(x)对于x∈R恒成立,则( )
| A. | e2f(-2)>f(0),f(2)>e2f(0) | B. | e2f(-2)<f(0),f(2)<e2f(0) | ||
| C. | e2f(-2)>f(0),f(2)<e2f(0) | D. | e2f(-2)<f(0),f(2)>e2f(0) |