题目内容

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面

(2)当,且时,确定点的位置,即求出的值.

 

【答案】

(1)详见解析;(2) ;(3).

【解析】

试题分析:(1)证面面垂直,先证明线面垂直.那么证哪条线垂直哪个面?因为ABCD是正方形, .又由平面可得,所以可证平面,从而使问题得证.

 (2)设AC交BD=O.由(1)可得平面,所以即为三棱锥的高.由条件易得.

因为,所以可求出底面的面积.又因为PD=2,所以可求出点E到边PD的距离,从而可确定点E的位置.

试题解析:(1)证明:四边形ABCD是正方形ABCD,.

平面,平面,所以.

,所以平面.

因为平面,所以平面平面.

 (2) 设., .

在直角三角形ADB中,DB=PD=2,则PB=

中斜边PB的高h=

即E为PB的中点.

考点:1、平面与平面的垂直;2、几何体的体积.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网