题目内容
4.已知复数Z满足Z•(1+i)=2i,则Z是( )| A. | 1+i | B. | 1-i | C. | $\frac{1}{2}+\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
分析 由Z•(1+i)=2i,得到$Z=\frac{2i}{1+i}$,再利用复数代数形式的乘除运算化简即可得答案.
解答 解:由Z•(1+i)=2i,
则Z=$\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=1+i$.
故选:A.
点评 本题考查了复数代数形式的乘除运算,是基础题.
练习册系列答案
相关题目
14.已知曲线$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k+1}$=1(k∈R)表示焦点在y轴上的椭圆,则k的取值范围是( )
| A. | (-∞,1)∪(3,+∞) | B. | (-∞,3) | C. | (1,+∞) | D. | (1,3) |
19.命题p:?x0>1,lgx0>1,则¬p为( )
| A. | ?x0>1,lgx0≤1 | B. | ?x0>1,lgx0<1 | C. | ?x>1,lgx≤1 | D. | ?x>1,lgx<1 |
9.从装有2个红球和2个白球的袋内任取两球,下列每对事件中是互斥事件的是( )
| A. | 至少有一个白球;都是白球 | B. | 恰好有一个白球;恰好有两个白球 | ||
| C. | 至少有一个白球;至少有一个红球 | D. | 至多有一个白球;都是红球 |
16.已知平面α与平面β相交于直线l,l1在平面α内,l2在平面β内,若直线l1和l2是异面直线,则下列说法正确的是( )
| A. | l与都相交l1,l2 | B. | l至少与l1,l2中的一条相交 | ||
| C. | l至多与l1,l2中的一条相交 | D. | l与l1,l2都不相交 |
13.定义在(0,+∞)的函数f(x)非负实数,且满足xf′(x)<f(x),若m,n∈(0,+∞)且m<n,则必有( )
| A. | nf(n)<mf(m) | B. | nf(m)<mf(n) | C. | mf(m)<nf(n) | D. | mf(n)<nf(m) |
14.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,$f(x)=\root{3}{x}(1+x)$,则当x<0时,f(x)的表达式是( )
| A. | $f(x)=\root{3}{x}(1-x)$ | B. | $f(x)=-\root{3}{x}(1-x)$ | C. | $f(x)=\root{3}{x}(1+x)$ | D. | $f(x)=-\root{3}{x}(1+x)$ |