题目内容
| π |
| 2 |
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移
| π |
| 4 |
| 6 |
分析:(1)根据图象求出T,A,再求出ω,向左平移
个单位长度,求出φ,然后求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移
个单位,得到y=g(x)的图象,求出g(x)的解析式,求出函数y=f(x)+g(x)并且y=
求方程在(0,π)内所有交点的坐标.
| π |
| 12 |
(2)将函数y=f(x)的图象向右平移
| π |
| 4 |
| 6 |
解答:解:(1)由题图知A=2,T=π,于是ω=
=2,
将y=2sin2x的图象向左平移
个单位长度,
得y=2sin(2x+φ)的图象.
于是φ=2×
=
∴f(x)=2sin(2x+
)
(2)由题意得g(x)=2sin[2(x-
)+
]
=-2cos(2x+
)
故y=f(x)+g(x)=2sin(2x+
)-2cos(2x+
)
=2
sin(2x-
)
由2
sin(2x-
)=
,得sin(2x-
)=
∵0<x<π∴-
<2x-
<2π-
∴2x-
=
或2x-
=
∴x=
或x=
所求点的坐标为:(
,
)或(
,
)
| 2π |
| T |
将y=2sin2x的图象向左平移
| π |
| 12 |
得y=2sin(2x+φ)的图象.
于是φ=2×
| π |
| 12 |
| π |
| 6 |
| π |
| 6 |
(2)由题意得g(x)=2sin[2(x-
| π |
| 4 |
| π |
| 6 |
=-2cos(2x+
| π |
| 6 |
故y=f(x)+g(x)=2sin(2x+
| π |
| 6 |
| π |
| 6 |
=2
| 2 |
| π |
| 12 |
由2
| 2 |
| π |
| 12 |
| 6 |
| π |
| 12 |
| ||
| 2 |
∵0<x<π∴-
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
∴2x-
| π |
| 12 |
| π |
| 3 |
| π |
| 12 |
| 2π |
| 3 |
∴x=
| 5π |
| 24 |
| 3π |
| 8 |
所求点的坐标为:(
| 5π |
| 24 |
| 6 |
| 3π |
| 8 |
| 6 |
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查计算能力,是中档题.
练习册系列答案
相关题目