题目内容
如图,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为_____________.
2
已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是( )
A. B. C. D.
下列命题中正确的是( )
A.若为真命题,则为真命题
B.“,”是“”的充分必要条件
C.命题“若,则或”的逆否命题为“若或,则”
D.命题,使得,则,使得
已知i为虚数单位,复数,i ,且,则实数的值为
A. B. C.或 D.或
如下图是一个空间几何体的三视图,则该几何体的全面积为
A. B.16 C. D.
已知等差数列的公差,它的前项和为,若,且,,成等比数列.
(1)求数列的通项公式;
(2)设数列的前项和为,求证:.
下列四个函数中,以为最小正周期,且在区间上单调递减函数的是( )
A. B. C. D.
学校生活区内建有一块矩形休闲区域ABCD,AB=100米,BC=50米,为了便于同学们平时休闲散步,学校后勤部门将在这块区域内铺设三条小路OE、EF和OF,考虑到学校整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且OE⊥OF,如图所示.
(1)设∠BOE=,试将△OEF的周长表示成的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为800元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
已知椭圆C:+=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为.
(1)求椭圆C的方程;
(2)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.