题目内容
8.已知函数f(x)是定义域为R的函数,且f(x)=-f(x+$\frac{3}{2}$),f(-2)=f(-1)=-1,f(0)=2,则f(1)+f(2)+…+f(2016)=( )| A. | -2 | B. | -1 | C. | 0 | D. | 2 |
分析 根据条件可得出f(x)=f(x+3),f(x)是以3为周期的函数;结合条件判断f(1)+f(2)+f(3)=0,只需判断
f(1)+f(2)+…+f(2016)有几组 f(1)+f(2)+f(3)即可.
解答 解:∵f(x)=-f(x+$\frac{3}{2}$),
∴f(x+$\frac{3}{2}$)=-f(x+3),f(x)=f(x+3),
∴f(x)是以3为周期的函数;
又f(1)=f(-2+3)=f(-2)=-1,f(2)=f(-1+3)=f(-1)=-1,f(3)=f(0+3)=f(0)=2,
∴f(1)+f(2)+f(3)=0,同理,f(4)+f(5)+f(6)=0,…
∴f(1)+f(2)+…+f(2015)+f(2016)
=0
故选C.
点评 本题考查了抽象函数周期性的判断和应用.难点是对周期性的深刻理解.
练习册系列答案
相关题目
3.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{PQ}$=( )
| A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | B. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ | D. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$ |
3.已知a>0,且a≠1,下列函数中,在其定义域内是单调函数而且又是奇函数的是( )
| A. | y=sinax | B. | y=logax2 | C. | y=ax-a-x | D. | y=tanax |
13.下面各组函数中为相等函数的是( )
| A. | f(x)=$\sqrt{{{(x-1)}^2}}$,g(x)=x-1 | B. | f(x)=x-1,g(t)=t-1 | ||
| C. | f(x)=$\sqrt{{x^2}-1}$,g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$ | D. | f(x)=x,g(x)=$\frac{x^2}{x}$ |
17.2016°角所在的象限是( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |