题目内容

16.设点P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上一点,F1,F2分别是左右焦点,I是△PF1F2的内心,若△IPF1,△IPF2,△IF1F2的面积S1,S2,S3满足2(S1-S2)=S3,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.4D.$\sqrt{2}$

分析 先根据题意作出示意图,如图所示,利用平面几何的知识利用三角形面积公式,代入已知式2(S1-S2)=S3,化简可得|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.

解答 解:如图,设圆I与△PF1F2的三边F1F2、PF1
PF2分别相切于点E、F、G,连接IE、IF、IG,
则IE⊥F1F2,IF⊥PF1,IG⊥PF2

它们分别是△IF1F2,△IPF1,△IPF2的高,
∴S1=$\frac{1}{2}$|PF1|•|IF|=$\frac{1}{2}$|PF1|r,
S2=$\frac{1}{2}$|PF2|•|IG|=$\frac{1}{2}$|PF2|r,
S3=$\frac{1}{2}$|F1F2|•|IE|=$\frac{1}{2}$|F1F2|r,
其中r是△PF1F2的内切圆的半径.
∵S1-S2=$\frac{1}{2}$S3
∴$\frac{r}{2}$|PF1|-$\frac{r}{2}$|PF2|=$\frac{r}{4}$|F1F2|,
两边约去$\frac{r}{2}$得:|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,
根据双曲线定义,得|PF1|-|PF2|=2a,|F1F2|=2c,
∴2a=c⇒离心率为e=$\frac{c}{a}$=2.
故选:A.

点评 本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网